skip to main content


Search for: All records

Creators/Authors contains: "Tan, Siew Ting Melissa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The development of sensor electrode materials for the detection of metabolites will enable point‐of‐care diagnostic devices for the monitoring and treatment of metabolic diseases such as diabetes. Current state‐of‐the‐art glucose sensing electrodes employ the organic salt tetrathiafulvene tetracyanoquinodimethane (TTF TCNQ) to receive electrons directly from enzymatic reactions of glucose. However, TTF TCNQ is insoluble in most solvents, making it challenging to deposit high‐quality electrodes. Furthermore, its hydrophobicity hinders its interface with aqueous solutions in physiological environments. To overcome these issues, TCNQ derivatives are introduced into an electron‐rich and hydrophilic conjugated polymer. Thus, a polymeric electrode is demonstrated that is easily solution processible and can undergo volumetric direct electron transfer with glucose reactions throughout its bulk. This study further elucidates the electron transfer mechanism during chemical doping and metabolite sensing reactions to inform general design rules for this new class of glucose sensing materials.

     
    more » « less
  2. Abstract

    Organic electrochemical transistors (OECTs) have shown promise as transducers and amplifiers of minute electronic potentials due to their large transconductances. Tuning the OECT threshold voltage is important to achieve low‐powered devices with amplification properties within the desired operational voltage range. However, traditional design approaches have struggled to decouple channel and materials properties from threshold voltage, thereby compromising on several other OECT performance metrics, such as electrochemical stability, transconductance, and dynamic range. In this work, simple solution‐processing methods are utilized to chemically dope polymer gate electrodes, thereby controlling their work function, which in turn tunes the operation voltage range of the OECTs without perturbing their channel properties. Chemical doping of initially air‐sensitive polymer electrodes further improves their electrochemical stability in ambient conditions. Thus, OECTs that are simultaneously low‐powered and electrochemically resistant to oxidative side reactions under ambient conditions are demonstrated. This approach shows that threshold voltage, which is once interwoven with other OECT properties, can in fact be an independent design parameter, expanding the design space of OECTs.

     
    more » « less
  3. Abstract

    Organic electrochemical transistors (OECTs) have exhibited promising performance as transducers and amplifiers of low potentials due to their exceptional transconductance, enabled by the volumetric charging of organic mixed ionic/electronic conductors (OMIECs) employed as the channel material. OECT performance in aqueous electrolytes as well as the OMIECs’ redox activity has spurred a myriad of studies employing OECTs as chemical transducers. However, the OECT's large (potentiometrically derived) transconductance is not fully leveraged in common approaches that directly conduct chemical reactions amperometrically within the OECT electrolyte with direct charge transfer between the analyte and the OMIEC, which results in sub‐unity transduction of gate to drain current. Hence, amperometric OECTs do not truly display current gains in the traditional sense, falling short of the expected transistor performance. This study demonstrates an alternative device architecture that separates chemical transduction and amplification processes on two different electrochemical cells. This approach fully utilizes the OECT's large transconductance to achieve current gains of 103and current modulations of four orders of magnitude. This transduction mechanism represents a general approach enabling high‐gain chemical OECT transducers.

     
    more » « less
  4. Abstract

    A type of haptic device is described that delivers two modes of stimulation simultaneously and at the same location on the skin. The two modes of stimulation are mechanical (delivered pneumatically by inflatable air pockets embedded within a silicone elastomer) and electrical (delivered by a conductive polymer). The key enabling aspect of this work is the use of a highly plasticized conductive polymer based on poly(3,4‐ethylenedioxythiphene) (PEDOT) blended with elastomeric polyurethane (PU). To fabricate the “electropneumotactile” device, the polymeric electrodes are overlaid directly on top of the elastomeric pneumatic actuator pockets. Co‐placement of the pneumatic actuators and the electrotactile electrodes is enabled by the stretchability of the PEDOT:tosylate/PU blend, allowing the electrotactiles to conform to underlying pneumatic pockets under deformation. The blend of PEDOT and PU has a Young's modulus of ≈150 MPa with little degradation in conductivity following repeated inflation of the air pockets. The ability to perceive simultaneous delivery of two sensations to the same location on the skin is supported by experiments using human subjects. These results show that participants can successfully detect the location of pneumatic stimulation and whether electrotactile stimulation is delivered (yes/no) at a rate significantly above chance (mean accuracy = 94%).

     
    more » « less